Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 73, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715119

RESUMO

BACKGROUND: Neuroinflammation and Alzheimer's disease (AD) co-pathology may contribute to disease progression and severity in dementia with Lewy bodies (DLB). This study aims to clarify whether a different pattern of neuroinflammation, such as alteration in microglial and astroglial morphology and distribution, is present in DLB cases with and without AD co-pathology. METHODS: The morphology and load (% area of immunopositivity) of total (Iba1) and reactive microglia (CD68 and HLA-DR), reactive astrocytes (GFAP) and proteinopathies of alpha-synuclein (KM51/pser129), amyloid-beta (6 F/3D) and p-tau (AT8) were assessed in a cohort of mixed DLB + AD (n = 35), pure DLB (n = 15), pure AD (n = 16) and control (n = 11) donors in limbic and neocortical brain regions using immunostaining, quantitative image analysis and confocal microscopy. Regional and group differences were estimated using a linear mixed model analysis. RESULTS: Morphologically, reactive and amoeboid microglia were common in mixed DLB + AD, while homeostatic microglia with a small soma and thin processes were observed in pure DLB cases. A higher density of swollen astrocytes was observed in pure AD cases, but not in mixed DLB + AD or pure DLB cases. Mixed DLB + AD had higher CD68-loads in the amygdala and parahippocampal gyrus than pure DLB cases, but did not differ in astrocytic loads. Pure AD showed higher Iba1-loads in the CA1 and CA2, higher CD68-loads in the CA2 and subiculum, and a higher astrocytic load in the CA1-4 and subiculum than mixed DLB + AD cases. In mixed DLB + AD cases, microglial load associated strongly with amyloid-beta (Iba1, CD68 and HLA-DR), and p-tau (CD68 and HLA-DR), and minimally with alpha-synuclein load (CD68). In addition, the highest microglial activity was found in the amygdala and CA2, and astroglial load in the CA4. Confocal microscopy demonstrated co-localization of large amoeboid microglia with neuritic and classic-cored plaques of amyloid-beta and p-tau in mixed DLB + AD cases. CONCLUSIONS: In conclusion, microglial activation in DLB was largely associated with AD co-pathology, while astrocytic response in DLB was not. In addition, microglial activity was high in limbic regions, with prevalent AD pathology. Our study provides novel insights into the molecular neuropathology of DLB, highlighting the importance of microglial activation in mixed DLB + AD.


Assuntos
Doença de Alzheimer , Astrócitos , Doença por Corpos de Lewy , Microglia , Doenças Neuroinflamatórias , Humanos , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Feminino , Masculino , Idoso , Idoso de 80 Anos ou mais , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo , Microglia/patologia , Microglia/metabolismo , Astrócitos/patologia , Astrócitos/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Antígenos CD/metabolismo , Peptídeos beta-Amiloides/metabolismo , Pessoa de Meia-Idade , Antígenos de Diferenciação Mielomonocítica/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Molécula CD68
2.
Brain ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696728

RESUMO

Multiple System Atrophy is characterized pathologically by the accumulation of alpha-synuclein (aSyn) into glial cytoplasmic inclusions (GCIs). The mechanism underlying the formation of GCIs is not well understood. In this study, correlative light and electron microscopy was employed to investigate aSyn pathology in the substantia nigra and putamen of post-mortem multiple system atrophy brain donors. Three distinct types of aSyn immuno-positive inclusions were identified in oligodendrocytes, neurons and dark cells presumed to be dark microglia. Oligodendrocytes contained fibrillar GCIs that were consistently enriched with lysosomes and peroxisomes, supporting the involvement of the autophagy pathway in aSyn aggregation in multiple system atrophy. Neuronal cytoplasmic inclusions exhibited ultrastructural heterogeneity resembling both fibrillar and membranous inclusions, linking multiple systems atrophy and Parkinson's disease. The novel aSyn pathology identified in the dark cells, displayed GCI-like fibrils or non-GCI-like ultrastructures suggesting various stages of aSyn accumulation in these cells. The observation of GCI-like fibrils within dark cells suggests these cells may be an important contributor to the origin or spread of pathological aSyn in multiple system atrophy. Our results suggest a complex interplay between multiple cell types that may underlie the formation of aSyn pathology in multiple system atrophy brain and highlight the need for further investigation into cell-specific disease pathologies in multiple system atrophy.

3.
Acta Neuropathol ; 147(1): 67, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581586

RESUMO

Transcription factor EB (TFEB) is a master regulator of genes involved in the maintenance of autophagic and lysosomal homeostasis, processes which have been implicated in the pathogenesis of GBA-related and sporadic Parkinson's disease (PD), and dementia with Lewy bodies (DLB). TFEB activation results in its translocation from the cytosol to the nucleus. Here, we investigated TFEB subcellular localization and its relation to intracellular alpha-synuclein (aSyn) accumulation in post-mortem human brain of individuals with either incidental Lewy body disease (iLBD), GBA-related PD/DLB (GBA-PD/DLB) or sporadic PD/DLB (sPD/DLB), compared to control subjects. We analyzed nigral dopaminergic neurons using high-resolution confocal and stimulated emission depletion (STED) microscopy and semi-quantitatively scored the TFEB subcellular localization patterns. We observed reduced nuclear TFEB immunoreactivity in PD/DLB patients compared to controls, both in sporadic and GBA-related cases, as well as in iLBD cases. Nuclear depletion of TFEB was more pronounced in neurons with Ser129-phosphorylated (pSer129) aSyn accumulation in all groups. Importantly, we observed previously-unidentified TFEB-immunopositive perinuclear clusters in human dopaminergic neurons, which localized at the Golgi apparatus. These TFEB clusters were more frequently observed and more severe in iLBD, sPD/DLB and GBA-PD/DLB compared to controls, particularly in pSer129 aSyn-positive neurons, but also in neurons lacking detectable aSyn accumulation. In aSyn-negative cells, cytoplasmic TFEB clusters were more frequently observed in GBA-PD/DLB and iLBD patients, and correlated with reduced GBA enzymatic activity as well as increased Braak LB stage. Altered TFEB distribution was accompanied by a reduction in overall mRNA expression levels of selected TFEB-regulated genes, indicating a possible early dysfunction of lysosomal regulation. Overall, we observed cytoplasmic TFEB retention and accumulation at the Golgi in cells without apparent pSer129 aSyn accumulation in iLBD and PD/DLB patients. This suggests potential TFEB impairment at the early stages of cellular disease and underscores TFEB as a promising therapeutic target for synucleinopathies.


Assuntos
Doença por Corpos de Lewy , Humanos , alfa-Sinucleína/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Encéfalo/patologia , Neurônios Dopaminérgicos/metabolismo , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia
4.
Transl Neurodegener ; 13(1): 9, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336865

RESUMO

BACKGROUND: Degeneration of the locus coeruleus (LC) noradrenergic system contributes to clinical symptoms in Alzheimer's disease (AD) and Parkinson's disease (PD). Diffusion magnetic resonance imaging (MRI) has the potential to evaluate the integrity of the LC noradrenergic system. The aim of the current study was to determine whether the diffusion MRI-measured integrity of the LC and its tracts are sensitive to noradrenergic degeneration in AD and PD. METHODS: Post-mortem in situ T1-weighted and multi-shell diffusion MRI was performed for 9 AD, 14 PD, and 8 control brain donors. Fractional anisotropy (FA) and mean diffusivity were derived from the LC, and from tracts between the LC and the anterior cingulate cortex, the dorsolateral prefrontal cortex (DLPFC), the primary motor cortex (M1) or the hippocampus. Brain tissue sections of the LC and cortical regions were obtained and immunostained for dopamine-beta hydroxylase (DBH) to quantify noradrenergic cell density and fiber load. Group comparisons and correlations between outcome measures were performed using linear regression and partial correlations. RESULTS: The AD and PD cases showed loss of LC noradrenergic cells and fibers. In the cortex, the AD cases showed increased DBH + immunoreactivity in the DLPFC compared to PD cases and controls, while PD cases showed reduced DBH + immunoreactivity in the M1 compared to controls. Higher FA within the LC was found for AD, which was correlated with loss of noradrenergic cells and fibers in the LC. Increased FA of the LC-DLPFC tract was correlated with LC noradrenergic fiber loss in the combined AD and control group, whereas the increased FA of the LC-M1 tract was correlated with LC noradrenergic neuronal loss in the combined PD and control group. The tract alterations were not correlated with cortical DBH + immunoreactivity. CONCLUSIONS: In AD and PD, the diffusion MRI-detected alterations within the LC and its tracts to the DLPFC and the M1 were associated with local noradrenergic neuronal loss within the LC, rather than noradrenergic changes in the cortex.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Norepinefrina
5.
Acta Neuropathol ; 147(1): 14, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198008

RESUMO

Alpha-synuclein (aSyn) pathology is present in approximately 50% of Alzheimer's disease (AD) cases at autopsy and might impact the age-of-onset and disease progression in AD. Here, we aimed to determine whether tau and aSyn profiles differ between AD cases with Lewy bodies (AD-LB), pure AD and Parkinson's disease with dementia (PDD) cases using epitope-, post-translational modification- (PTM) and isoform-specific tau and aSyn antibody panels spanning from the N- to C-terminus. We included the middle temporal gyrus (MTG) and amygdala (AMY) of clinically diagnosed and pathologically confirmed cases and performed dot blotting, western blotting and immunohistochemistry combined with quantitative and morphological analyses. All investigated phospho-tau (pTau) species, except pT181, were upregulated in AD-LB and AD cases compared to PDD and control cases, but no significant differences were observed between AD-LB and AD subjects. In addition, tau antibodies targeting the proline-rich regions and C-terminus showed preferential binding to AD-LB and AD brain homogenates. Antibodies targeting C-terminal aSyn epitopes and pS129 aSyn showed stronger binding to AD-LB and PDD cases compared to AD and control cases. Two pTau species (pS198 and pS396) were specifically detected in the soluble protein fractions of AD-LB and AD subjects, indicative of early involvement of these PTMs in the multimerization process of tau. Other phospho-variants for both tau (pT212/S214, pT231 and pS422) and aSyn (pS129) were only detected in the insoluble protein fraction of AD-LB/AD and AD-LB/PDD cases, respectively. aSyn load was higher in the AMY of AD-LB cases compared to PDD cases, suggesting aggravated aSyn pathology under the presence of AD pathology, while tau load was similar between AD-LB and AD cases. Co-localization of pTau and aSyn could be observed within astrocytes of AD-LB cases within the MTG. These findings highlight a unique pathological signature for AD-LB cases compared to pure AD and PDD cases.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína , Corpos de Lewy , Anticorpos , Epitopos
6.
Acta Neuropathol Commun ; 12(1): 4, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173031

RESUMO

Regional differences in synaptic degeneration may underlie differences in clinical presentation and neuropathological disease progression in Parkinson's Disease (PD) and Dementia with Lewy bodies (DLB). Here, we mapped and quantified synaptic degeneration in cortical brain regions in PD, PD with dementia (PDD) and DLB, and assessed whether regional differences in synaptic loss are linked to axonal degeneration and neuropathological burden. We included a total of 47 brain donors, 9 PD, 12 PDD, 6 DLB and 20 non-neurological controls. Synaptophysin+ and SV2A+ puncta were quantified in eight cortical regions using a high throughput microscopy approach. Neurofilament light chain (NfL) immunoreactivity, Lewy body (LB) density, phosphorylated-tau and amyloid-ß load were also quantified. Group differences in synaptic density, and associations with neuropathological markers and Clinical Dementia Rating (CDR) scores, were investigated using linear mixed models. We found significantly decreased synaptophysin and SV2A densities in the cortex of PD, PDD and DLB cases compared to controls. Specifically, synaptic density was decreased in cortical regions affected at Braak α-synuclein stage 5 in PD (middle temporal gyrus, anterior cingulate and insula), and was additionally decreased in cortical regions affected at Braak α-synuclein stage 4 in PDD and DLB compared to controls (entorhinal cortex, parahippocampal gyrus and fusiform gyrus). Synaptic loss associated with higher NfL immunoreactivity and LB density. Global synaptophysin loss associated with longer disease duration and higher CDR scores. Synaptic neurodegeneration occurred in temporal, cingulate and insular cortices in PD, as well as in parahippocampal regions in PDD and DLB. In addition, synaptic loss was linked to axonal damage and severe α-synuclein burden. These results, together with the association between synaptic loss and disease progression and cognitive impairment, indicate that regional synaptic loss may underlie clinical differences between PD and PDD/DLB. Our results might provide useful information for the interpretation of synaptic biomarkers in vivo.


Assuntos
Doença por Corpos de Lewy , Doenças do Sistema Nervoso , Doença de Parkinson , Humanos , Doença de Parkinson/patologia , alfa-Sinucleína , Doença por Corpos de Lewy/patologia , Corpos de Lewy/patologia , Sinaptofisina , Progressão da Doença
7.
Brain ; 147(3): 858-870, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671566

RESUMO

Parkinson's disease is an age-related neurodegenerative disorder with a higher incidence in males than females. The causes for this sex difference are unknown. Genome-wide association studies (GWAS) have identified 90 Parkinson's disease risk loci, but the genetic studies have not found sex-specific differences in allele frequency on autosomal chromosomes or sex chromosomes. Genetic variants, however, could exert sex-specific effects on gene function and regulation of gene expression. To identify genetic loci that might have sex-specific effects, we studied pleiotropy between Parkinson's disease and sex-specific traits. Summary statistics from GWASs were acquired from large-scale consortia for Parkinson's disease (n cases = 13 708; n controls = 95 282), age at menarche (n = 368 888 females) and age at menopause (n = 69 360 females). We applied the conditional/conjunctional false discovery rate (FDR) method to identify shared loci between Parkinson's disease and these sex-specific traits. Next, we investigated sex-specific gene expression differences in the superior frontal cortex of both neuropathologically healthy individuals and Parkinson's disease patients (n cases = 61; n controls = 23). To provide biological insights to the genetic pleiotropy, we performed sex-specific expression quantitative trait locus (eQTL) analysis and sex-specific age-related differential expression analysis for genes mapped to Parkinson's disease risk loci. Through conditional/conjunctional FDR analysis we found 11 loci shared between Parkinson's disease and the sex-specific traits age at menarche and age at menopause. Gene-set and pathway analysis of the genes mapped to these loci highlighted the importance of the immune response in determining an increased disease incidence in the male population. Moreover, we highlighted a total of nine genes whose expression or age-related expression in the human brain is influenced by genetic variants in a sex-specific manner. With these analyses we demonstrated that the lack of clear sex-specific differences in allele frequencies for Parkinson's disease loci does not exclude a genetic contribution to differences in disease incidence. Moreover, further studies are needed to elucidate the role that the candidate genes identified here could have in determining a higher incidence of Parkinson's disease in the male population.


Assuntos
Doença de Parkinson , Humanos , Feminino , Masculino , Doença de Parkinson/genética , Estudo de Associação Genômica Ampla , Caracteres Sexuais , Fenótipo , Encéfalo
8.
Mov Disord ; 39(3): 596-601, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38124396

RESUMO

BACKGROUND: Genetics influence cognitive progression in Parkinson's disease, possibly through mechanisms related to Lewy and Alzheimer's disease pathology. Lysosomal polygenic burden has recently been linked to more severe Lewy pathology post mortem. OBJECTIVES: To assess the influence of lysosomal polygenic burden on cognitive progression in Parkinson's disease patients with low Alzheimer's disease risk. METHODS: Using Cox regression we assessed association between lysosomal polygenic scores and time to Montreal Cognitive Assessment score ≤ 21 in the Parkinson's Progression Markers Initiative cohort (n = 374), with replication in data from the Parkinson's Disease Biomarker Program (n = 777). Patients were stratified by Alzheimer's disease polygenic risk. RESULTS: The lysosomal polygenic score was associated with faster progression of cognitive decline in patients with low Alzheimer's disease risk in both datasets (P = 0.0032 and P = 0.0054, respectively). CONCLUSION: Our study supports complex interplay between genetics and neuropathology in Parkinson's disease-related cognitive impairment, emphasizing the role of lysosomal polygenic burden. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/complicações , Biomarcadores
9.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834363

RESUMO

An altered immune response has been identified as a pathophysiological factor in Parkinson's disease (PD). We aimed to identify blood immunity-associated proteins that discriminate PD from controls and that are associated with long-term disease severity in PD patients. Immune response-derived proteins in blood plasma were measured using Proximity Extension Technology by OLINK in a cohort of PD patients (N = 66) and age-matched healthy controls (N = 52). In a selection of 30 PD patients, we evaluated changes in protein levels 7-10 years after the baseline and assessed correlations with motor and cognitive assessments. Data from the Parkinson's Disease Biomarkers Program (PDBP) cohort and the Parkinson's Progression Markers Initiative (PPMI) cohort were used for independent validation. PD patients showed an altered immune response compared to controls based on a panel of four proteins (IL-12B, OPG, CXCL11, and CSF-1). The expression levels of five inflammation-associated proteins (CCL23, CCL25, TNFRSF9, TGF-alpha, and VEGFA) increased over time in PD and were partially associated with more severe motor and cognitive symptoms at follow-up. Increased CCL23 levels were associated with cognitive decline and the APOE4 genotype. Our findings provide further evidence for an altered immune response in PD that is associated with disease severity in PD over a long period of time.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Biomarcadores/metabolismo , Gravidade do Paciente , Proteínas de Transporte , Progressão da Doença
10.
Ned Tijdschr Geneeskd ; 1672023 09 06.
Artigo em Holandês | MEDLINE | ID: mdl-37688454

RESUMO

Considering age to be the primary risk factor for developing Parkinson's disease and the observation that the Dutch population is rapidly aging, the parkinson prevalence is expected to increase over the coming years, as there is still no cure available for the disease. This has been confirmed by epidemiological data, which show a steady increase of the disease prevalence in the Netherlands for the period 2010-2021. Genetic risk factors only partially explain the disease pathogenesis. Environmental factors, such as exposure to pesticides and trichloroethylene are associated with a higher risk for developing Parkinson's disease. Lifestyle factors such as exercise, caffeine intake and the Mediterranean diet are associated with a lower risk for developing the disease and possibly delay the disease progression. Policy makers and healthcare providers should employ stricter regulations for pesticide use and should stimulate a healthy lifestyle to slow down the increasing prevalence.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/epidemiologia , Doença de Parkinson/etiologia , Doença de Parkinson/prevenção & controle , Fatores de Risco , Envelhecimento , Progressão da Doença , Etnicidade
11.
Cells ; 12(10)2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37408202

RESUMO

Growing evidence suggests a crucial role of neuroinflammation in the pathophysiology of Parkinson's disease (PD). Neuroinflammation is linked to the accumulation and aggregation of a-synuclein (αSyn), the primary pathological hallmark of PD. Toll-like receptors 4 (TLR4) can have implications in the development and progression of the pathology. In this study, we analyzed the expression of TLR4 in the substantia nigra (SN) and medial temporal gyrus (GTM) of well-characterized PD patients and age-matched controls. We also assessed the co-localization of TLR4 with pSer129 αSyn. Using qPCR, we observed an upregulation of TLR4 expression in the SN and GTM in PD patients compared to controls, which was accompanied by a reduction in αSyn expression likely due to the depletion of dopaminergic (DA) cells. Additionally, using immunofluorescence and confocal microscopy, we observed TLR4-positive staining and co-localization with pSer129-αSyn in Lewy bodies of DA neurons in the SN, as well as in pyramidal neurons in the GTM of PD donors. Furthermore, we observed a co-localization of TLR4 and Iba-1 in glial cells of both SN and GTM. Our findings provide evidence for the increased expression of TLR4 in the PD brain and suggest that the interaction between TLR4 and pSer129-αSyn could play a role in mediating the neuroinflammatory response in PD.


Assuntos
Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Corpos de Lewy/metabolismo , Doenças Neuroinflamatórias , Doença de Parkinson/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
12.
Brain Sci ; 13(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37371330

RESUMO

INTRODUCTION: Physical exercise is receiving increasing interest as an augmentative non-pharmacological intervention in Parkinson's disease (PD). This pilot study primarily aimed to quantify individual response patterns of motor symptoms to alternating exercise modalities, along with non-motor functioning and blood biomarkers of neuroplasticity and neurodegeneration. MATERIALS & METHODS: People with PD performed high-intensity interval training (HIIT) and continuous aerobic exercise (CAE) using a crossover single-case experimental design. A repeated assessment of outcome measures was conducted. The trajectories of outcome measures were visualized in time series plots and interpreted relative to the minimal clinically important difference (MCID) and smallest detectable change (SDC) or as a change in the positive or negative direction using trend lines. RESULTS: Data of three participants were analyzed and engaging in physical exercise seemed beneficial for reducing motor symptoms. Participant 1 demonstrated improvement in motor function, independent of exercise modality; while for participant 2, such a clinically relevant (positive) change in motor function was only observed in response to CAE. Participant 3 showed improved motor function after HIIT, but no comparison could be made with CAE because of drop-out. Heterogeneous responses on secondary outcome measures were found, not only between exercise modalities but also among participants. CONCLUSION: Though this study underpins the positive impact of physical exercise in the management of PD, large variability in individual response patterns to the interventions among participants makes it difficult to identify clear exercise-induced adaptations in functioning and blood biomarkers. Further research is needed to overcome methodological challenges in measuring individual response patterns.

13.
Acta Neuropathol ; 146(2): 227-244, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37347276

RESUMO

Parkinson´s disease (PD) is a progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Aggravation of symptoms is mirrored by accumulation of protein aggregates mainly composed by alpha-synuclein in different brain regions, called Lewy bodies (LB). Previous studies have identified several molecular mechanisms as autophagy and inflammation playing a role in PD pathogenesis. Increased insights into mechanisms involved in early disease stages and driving the progression of the LB pathology are required for the development of disease-modifying strategies. Here, we aimed to elucidate disease stage-specific transcriptomic changes in brain tissue of well-characterized PD and control donors. We collected frontal cortex samples from 84 donors and sequenced both the coding and non-coding RNAs. We categorized our samples into groups based on their degree of LB pathology aiming to recapitulate a central aspect of disease progression. Using an analytical pipeline that corrected for sex, age at death, RNA quality, cell composition and unknown sources of variation, we found major disease stage-specific transcriptomic changes. Gene expression changes were most pronounced in donors at the disease stage when microscopic LB changes first occur in the sampled brain region. Additionally, we identified disease stage-specific enrichment of brain specific pathways and immune mechanisms. On the contrary, we showed that mitochondrial mechanisms are enriched throughout the disease course. Our data-driven approach also suggests a role for several poorly characterized lncRNAs in disease development and progression of PD. Finally, by combining genetic and epigenetic information, we highlighted two genes (MAP4K4 and PHYHIP) as candidate genes for future functional studies. Together our results indicate that transcriptomic dysregulation and associated functional changes are highly disease stage-specific, which has major implications for the study of neurodegenerative disorders.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/patologia , Transcriptoma , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Corpos de Lewy/patologia , Encéfalo/patologia , Degeneração Neural/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
14.
Mov Disord ; 38(9): 1655-1667, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37347552

RESUMO

BACKGROUND: Motor and cognitive impairment in Parkinson's disease (PD) is associated with dopaminergic dysfunction that stems from substantia nigra (SN) degeneration and concomitant α-synuclein accumulation. Diffusion magnetic resonance imaging (MRI) can detect microstructural alterations of the SN and its tracts to (sub)cortical regions, but their pathological sensitivity is still poorly understood. OBJECTIVE: To unravel the pathological substrate(s) underlying microstructural alterations of SN, and its tracts to the dorsal striatum and dorsolateral prefrontal cortex (DLPFC) in PD. METHODS: Combining post-mortem in situ MRI and histopathology, T1-weighted and diffusion MRI, and neuropathological samples of nine PD, six PD with dementia (PDD), five dementia with Lewy bodies (DLB), and 10 control donors were collected. From diffusion MRI, mean diffusivity (MD) and fractional anisotropy (FA) were derived from the SN, and tracts between the SN and caudate nucleus, putamen, and DLPFC. Phosphorylated-Ser129-α-synuclein and tyrosine hydroxylase immunohistochemistry was included to quantify nigral Lewy pathology and dopaminergic degeneration, respectively. RESULTS: Compared to controls, PD and PDD/DLB showed increased MD of the SN and SN-DLPFC tract, as well as increased FA of the SN-caudate nucleus tract. Both PD and PDD/DLB showed nigral Lewy pathology and dopaminergic loss compared to controls. Increased MD of the SN and FA of SN-caudate nucleus tract were associated with SN dopaminergic loss. Whereas increased MD of the SN-DLPFC tract was associated with increased SN Lewy neurite load. CONCLUSIONS: In PD and PDD/DLB, diffusion MRI captures microstructural alterations of the SN and tracts to the dorsal striatum and DLPFC, which differentially associates with SN dopaminergic degeneration and Lewy neurite pathology. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , alfa-Sinucleína/metabolismo , Substância Negra/metabolismo , Corpo Estriado/metabolismo , Putamen/metabolismo , Dopamina , Doença por Corpos de Lewy/patologia
15.
Brain ; 146(10): 4077-4087, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37247383

RESUMO

Intraneuronal accumulation of misfolded α-synuclein is the pathological hallmark of Parkinson's disease and dementia with Lewy bodies, often co-occurring with variable degrees of Alzheimer's disease related neuropathology. Genetic association studies have successfully identified common variants associated with disease risk and phenotypic traits in Lewy body disease, yet little is known about the genetic contribution to neuropathological heterogeneity. Using summary statistics from Parkinson's disease and Alzheimer's disease genome-wide association studies, we calculated polygenic risk scores and investigated the relationship with Lewy, amyloid-ß and tau pathology. Associations were nominated in neuropathologically defined samples with Lewy body disease from the Netherlands Brain Bank (n = 217) and followed up in an independent sample series from the Mayo Clinic Brain Bank (n = 394). We also generated stratified polygenic risk scores based on single-nucleotide polymorphisms annotated to eight functional pathways or cell types previously implicated in Parkinson's disease and assessed for association with Lewy pathology in subgroups with and without significant Alzheimer's disease co-pathology. In an ordinal logistic regression model, the Alzheimer's disease polygenic risk score was associated with concomitant amyloid-ß and tau pathology in both cohorts. Moreover, both cohorts showed a significant association between lysosomal pathway polygenic risk and Lewy pathology, which was more consistent than the association with a general Parkinson's disease risk score and specific to the subset of samples without significant concomitant Alzheimer's disease related neuropathology. Our findings provide proof of principle that the specific risk alleles a patient carries for Parkinson's and Alzheimer's disease also influence key aspects of the underlying neuropathology in Lewy body disease. The interrelations between genetic architecture and neuropathology are complex, as our results implicate lysosomal risk loci specifically in the subset of samples without Alzheimer's disease co-pathology. Our findings hold promise that genetic profiling may help predict the vulnerability to specific neuropathologies in Lewy body disease, with potential relevance for the further development of precision medicine in these disorders.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Doença por Corpos de Lewy/metabolismo , Doença de Alzheimer/patologia , Doença de Parkinson/patologia , Estudo de Associação Genômica Ampla , Peptídeos beta-Amiloides/metabolismo , Lisossomos/metabolismo
16.
Transl Neurodegener ; 12(1): 3, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36658627

RESUMO

BACKGROUND: Increased neurofilament levels in biofluids are commonly used as a proxy for neurodegeneration in several neurodegenerative disorders. In this study, we aimed to investigate the distribution of neurofilaments in the cerebral cortex of Parkinson's disease (PD), PD with dementia (PDD) and dementia with Lewy bodies (DLB) donors, and its association with pathology load and MRI measures of atrophy and diffusivity. METHODS: Using a within-subject post-mortem MRI-pathology approach, we included 9 PD, 12 PDD/DLB and 18 age-matched control donors. Cortical thickness and mean diffusivity (MD) metrics were extracted respectively from 3DT1 and DTI at 3T in-situ MRI. After autopsy, pathological hallmarks (pSer129-αSyn, p-tau and amyloid-ß load) together with neurofilament light-chain (NfL) and phosphorylated-neurofilament medium- and heavy-chain (p-NfM/H) immunoreactivity were quantified in seven cortical regions, and studied in detail with confocal-laser scanning microscopy. The correlations between MRI and pathological measures were studied using linear mixed models. RESULTS: Compared to controls, p-NfM/H immunoreactivity was increased in all cortical regions in PD and PDD/DLB, whereas NfL immunoreactivity was increased in the parahippocampal and entorhinal cortex in PDD/DLB. NfL-positive neurons showed degenerative morphological features and axonal fragmentation. The increased p-NfM/H correlated with p-tau load, and NfL correlated with pSer129-αSyn but more strongly with p-tau load in PDD/DLB. Lastly, neurofilament immunoreactivity correlated with cortical thinning in PD and with increased cortical MD in PDD/DLB. CONCLUSIONS: Taken together, increased neurofilament immunoreactivity suggests underlying axonal injury and neurofilament accumulation in morphologically altered neurons with increased pathological burden. Importantly, we demonstrate that such neurofilament markers at least partly explain MRI measures that are associated with the neurodegenerative process.


Assuntos
Doença de Alzheimer , Demência , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Demência/complicações , Demência/patologia , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/complicações , Doença por Corpos de Lewy/patologia , Filamentos Intermediários/patologia , Doença de Alzheimer/complicações , Córtex Cerebral
17.
Transl Neurodegener ; 11(1): 52, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36474289

RESUMO

BACKGROUND: Axons, crucial for impulse transmission and cellular trafficking, are thought to be primary targets of neurodegeneration in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Axonal degeneration occurs early, preceeding and exceeding neuronal loss, and contributes to the spread of pathology, yet is poorly described outside the nigrostriatal circuitry. The insula, a cortical brain hub, was recently discovered to be highly vulnerable to pathology and plays a role in cognitive deficits in PD and DLB. The aim of this study was to evaluate morphological features as well as burden of proteinopathy and axonal degeneration in the anterior insular sub-regions in PD, PD with dementia (PDD), and DLB. METHODS: α-Synuclein, phosphorylated (p-)tau, and amyloid-ß pathology load were evaluated in the anterior insular (agranular and dysgranular) subregions of post-mortem human brains (n = 27). Axonal loss was evaluated using modified Bielschowsky silver staining and quantified using stereology. Cytoskeletal damage was comprehensively studied using immunofluorescent multi-labelling and 3D confocal laser-scanning microscopy. RESULTS: Compared to PD and PDD, DLB showed significantly higher α-synuclein and p-tau pathology load, argyrophilic grains, and  more severe axonal loss, particularly in the anterior agranular insula. Alternatively, the dysgranular insula showed a significantly higher load of amyloid-ß pathology and its axonal density correlated with cognitive performance. p-Tau contributed most to axonal loss in the DLB group, was highest in the anterior agranular insula and significantly correlated with CDR global scores for dementia. Neurofilament and myelin showed degenerative changes including swellings, demyelination, and detachment of the axon-myelin unit. CONCLUSIONS: Our results highlight the selective vulnerability of the anterior insular sub-regions to various converging pathologies, leading to impaired axonal integrity in PD, PDD and DLB, disrupting their functional properties and potentially contributing to cognitive, emotional, and autonomic deficits.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , alfa-Sinucleína , Córtex Insular , Doença por Corpos de Lewy/diagnóstico por imagem
18.
Nat Struct Mol Biol ; 29(10): 978-989, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224378

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disease for which robust biomarkers are needed. Because protein structure reflects function, we tested whether global, in situ analysis of protein structural changes provides insight into PD pathophysiology and could inform a new concept of structural disease biomarkers. Using limited proteolysis-mass spectrometry (LiP-MS), we identified 76 structurally altered proteins in cerebrospinal fluid (CSF) of individuals with PD relative to healthy donors. These proteins were enriched in processes misregulated in PD, and some proteins also showed structural changes in PD brain samples. CSF protein structural information outperformed abundance information in discriminating between healthy participants and those with PD and improved the discriminatory performance of CSF measures of the hallmark PD protein α-synuclein. We also present the first analysis of inter-individual variability of a structural proteome in healthy individuals, identifying biophysical features of variable protein regions. Although independent validation is needed, our data suggest that global analyses of the human structural proteome will guide the development of novel structural biomarkers of disease and enable hypothesis generation about underlying disease processes.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Biomarcadores , Humanos , Proteoma/metabolismo , alfa-Sinucleína/metabolismo
19.
Ann Clin Transl Neurol ; 9(11): 1832-1837, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36196979

RESUMO

Interpretation of axonal damage biomarker Neurofilament Light chain (NfL) concentrations is difficult due to the lack of age-specific and disease-specific reference values. We here developed an interactive interface to support interpretation of NfL results in human body fluids. We used NfL values of 1698 individuals without a neurological disorder, aged 19-85 years, and patients with MS and dementias. Percentile regression estimates per diagnosis populate interactive graphs, alongside NfL background information (available on: https://mybiomarkers.shinyapps.io/Neurofilament). This accessible interface provides reference for interpretation of the individual patient results for clinicians. It showcases an adaptable method to support interpretation of age-dependent biomarkers in neurology.


Assuntos
Axônios , Filamentos Intermediários , Humanos , Valores de Referência , Biomarcadores
20.
Nat Commun ; 13(1): 4819, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974013

RESUMO

Parkinson's disease (PD) as a progressive neurodegenerative disorder arises from multiple genetic and environmental factors. However, underlying pathological mechanisms remain poorly understood. Using multiplexed single-cell transcriptomics, we analyze human neural precursor cells (hNPCs) from sporadic PD (sPD) patients. Alterations in gene expression appear in pathways related to primary cilia (PC). Accordingly, in these hiPSC-derived hNPCs and neurons, we observe a shortening of PC. Additionally, we detect a shortening of PC in PINK1-deficient human cellular and mouse models of familial PD. Furthermore, in sPD models, the shortening of PC is accompanied by increased Sonic Hedgehog (SHH) signal transduction. Inhibition of this pathway rescues the alterations in PC morphology and mitochondrial dysfunction. Thus, increased SHH activity due to ciliary dysfunction may be required for the development of pathoetiological phenotypes observed in sPD like mitochondrial dysfunction. Inhibiting overactive SHH signaling may be a potential neuroprotective therapy for sPD.


Assuntos
Proteínas Hedgehog , Células-Tronco Neurais , Doença de Parkinson , Animais , Cílios/metabolismo , Modelos Animais de Doenças , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA